乌兰察布市珂玛新材料有限公司为客户提供新材料
咨询热线:155-4740-0001
热门关键词:
您的位置: 网站首页 >新闻动态

全国服务热线

15547400001

乌海PVP-I厂家地址

作者: 点击:32 发布时间:2021-03-17

乌海PVP-I厂家地址

正是由于直接脱水法需要较高的温度(350~400℃),加之如前所述,难以找到.工业化生产理想的脱水催化剂,所以有人提出了间接脱水法合成NVP的路线.间接脱水法是使NHP分子内的羟基首先被另一基团所取代生成一种中间产物,然后由这个中间产物发生反应生成NVP.

Arai等人发现,PVP/SDS混合液发生增溶作用所对应的表面活性剂浓度,与混合溶液表面张力-浓度曲线的一个转折点所对应的浓度是一致的.Murata等人13研究了温度和NaCl对PVP/SDS增溶OT-橙的影响,观察到PVP存在时导致SDS溶液增溶染料量增大等。研究了PVP对十二烷基氯化铵和十二烷基硫氰酸铵增溶OB-黄的影响,发现胶束增溶OB黄的能力随PVP含量增大呈上升趋势,但却没有观察到PVP对以氯为反离子的阳离子表面活性剂增溶染料的能力显著提高.



其他方面,如建材、冶金﹑炼钢、电镀等领域的应用研究也已开展,可以说,PVP已渗透到国民经济及人们生活的各个领域.PVP及其单体NVP早是由BASF公司J.Walter.Reppe以乙炔为主要原料合成的,该法称为Reppe法,又叫乙炔法.20世纪50年代,美国的ISP公司,当时的GAF公司与德国的BASF公司相继以乙炔法为基础建立了NVP生产线,进而生产出了各种牌号的PVP产品,迄今为止,这两家公司仍然是生产PVP产品的主要厂家。



显然,取代NHP分子内经基的基团必须满足---定的条件,即既容易取代NHP分子内的羟基,又要能比较容易地从中间产物分子中脱去.这样,不经过NHP的直接催化脱水,而是通过另外一种中间产物在较温和的条件下同样达到由NHP分子脱水生成产物NVP的目的,同时达到较高的产物收率,所以被称为间接脱水法.间接脱水法根据取代NHP分子内羟基基团的不同,又可分为卤代法、乙酐法等.卤代法是间接脱水法中被研究较好的主要方法,其方法要点是:用--种卤代剂与NHP反应生成卤代乙基吡咯烷酮,然后由卤代乙基吡咯烷酮的热反应得到产物NVP.

乌海PVP-I厂家地址

另外,共聚PVP和交联PVP红外光谱,由于共聚单体的不同或者交联剂分子结构的不同而不同。PVP的红外吸收峰较多,从500cmT1波数左右到3500cm'波数都有吸收峰.其特征吸收带为一C一О伸缩振动跃迁产生的谱带,这一谱带的位置在1660~1680cmT'范围内,根据PVP分子量大小等因素的变化,这一谱带的位置会有不同程度的差异.另一方面,从PVP的红外谱图可以看出,---C=-O伸缩振动谱带宽度约为30~35cmT',数值偏大,说明在一C--O双键与酰胺键--C一N一之间有很强的作用力,左右的位置为PVP分子的-C—N一伸缩振动谱带,由此峰可定量推算PVP的含量.



即使在没有引发剂的情况下,NVP放置的时间过长或者在运输过程中由于震动也可能发生不同程度的自聚合而影响其质量,所以在市售的商品NVP中一般都加有阻聚剂,而在进行聚合反应前需要去除其中的阻聚剂.处理方法有两种:一是采用减压蒸馏的方法得到纯净的NVP;二是加入活性炭,利用其吸附作用除去阻聚剂,然后过滤得到纯净的NVP.易水解性NVP的另一个重要的化学性质是在酸性或盐类存在的条件下很容易发生水解反应,生成吡咯烷酮和乙醛.



硬而光亮,由于PVP膜是通过溶液浇注或涂布而成的,克服了固体PVP塑性差的不足.PVP薄膜可根据涂布物任意成型,溶剂对形成的PVP膜无影响,利用PVP的成膜性可应用于很多方面.PVP在空气中的吸水率随相对湿度的增大而增大,当PVP薄膜吸水达到--定程度(从相对湿度大于70%的空气中吸水分)时,就会有一定的黏性.PVP吸湿平衡后水分含量大约为相对湿度的三分之一.热化学研究表明,每一个NVP结构单元大约可缔合0.5mol分子的水分,这与蛋白质的吸水性相似.

在卤代法中, 重要的是卤代剂的选择,不少研究工作证明,氯化亚飙(SOC1,)可作为卤代剂129},用SOCI。首先是羟乙基吡咯烷酮在溶剂苯中与SOCl,发生卤代反应生成氯乙基吡咯烷酮,然后用KOH或甲醇钠作催化剂脱去一分子氯化氢生成NVP,反应的实施过程如下:( 1 )NHP和苯按重量比1:0.5~0.8加人三颈烧瓶中,再把烧瓶置于加有冰块的超级恒水浴中,边搅拌,边由滴液漏斗滴加入重量为NHPO.83倍的SOCl ,控制速度使体系温度不大于35℃为宜(因为羟乙基吡咯烷酮与SOCl之间的反应为强放热反应),滴加完毕后继续搅拌4h,此时NHP的转化率已达90%以上,将反应装置接到SO。

乌海PVP-I厂家地址


其中具特色,因而受到人们重视并被广泛应用的是其优异的溶解性能、络合能力及生理相容性等.在合成高分子中,像PVP这样既溶于水,又溶于大部分溶剂,毒性很低,生理相容性好的品种迄今为止并不多见。PVP的优异性能使其得到越来越广泛的应用,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中的应用.下面介绍-些与应用密切相关的物理性质。